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A new formulation of the stability of boundary-layer flows in pressure gradients is 
presented, taking into account the spatial development of the flow and utilizing a 
special coordinate transformation. The formulation assumes that disturbance 
wavelength and eigenfunction vary downstream no more rapidly than the boundary- 
layer thickness, and includes all terms nominally of order R-' in the boundary-layer 
Reynolds number R. In Blasius flow, the present approach is consistent with that of 
Bertolotti et al. (1992) to O(R-') but simpler (i.e. has fewer terms), and may best be seen 
as providing a parametric differential equation which can be solved without having to 
march in space. The computed neutral boundaries depend strongly on distance from 
the surface, but the one corresponding to the inner maximum of the streamwise 
velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) 
boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of 
spatial growth to be striking only in the presence of strong adverse pressure gradients. 
As a rational analysis to O(R-l) demands inclusion of higher-order corrections on the 
mean flow, an illustrative calculation of one such correction, due to the displacement 
effect of the boundary layer, is made, and shown to have a significant destabilizing 
influence on the stability boundary in strong adverse pressure gradients. The effect of 
non-parallelism on the growth of relatively high frequencies can be significant at low 
Reynolds numbers, but is marginal in other cases. As an extension of the present 
approach, a method of dealing with non-similar flows is also presented and illustrated. 

However, inherent in the transformation underlying the present approach is a lower- 
order non-parallel theory, which is obtained by dropping all terms of nominal order 
R-' except those required for obtaining the lowest-order solution in the critical and 
wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed 
coordinates) already contains the major effects of non-parallelism. 

1. Introduction 
The investigation of the hydrodynamic stability of the laminar boundary layer has 

had a long and somewhat controversial history. The evolution of small periodic 
disturbances imposed on a parallel flow is generally investigated through the 
Orr-Sommerfeld equation, which has been extensively treated in Drazin & Reid 
(1981). Solutions of this equation, indicating the stability boundary for the laminar 
boundary layer on a flat plate, were first obtained by Tollmien in 1929; the predicted 
unstable waves were eventually observed in the careful experiments of Schubauer & 
Skramstad (1948). Although the qualitative predictions of the theory leading to the TS 
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FIGURE 1. Comparison of parallel flow theory (- - - -) with experiment : 

*, Schubauer & Skramstad (1948); 0, Ross et al. (1970). 

waves (as they are called - after Tollmien and Schlichting/Schubauer) have thus been 
confirmed, there is still disagreement among different workers on the precise 
quantitative parameters describing this instability. To see why this is so, we first present 
the results from classical Orr-Sommerfeld theory. Figure 1 shows the stability 
boundary computed by Gaster (1974) in the plane of the non-dimensional frequency 
parameter F = wd v / v Z  and the Reynolds number R = U13/v, where wd is the 
dimensional frequency of the disturbance, U is the (dimensional) free-stream velocity, 
B is the (dimensional) momentum thickness of the boundary layer and v is the 
kinematic viscosity of the fluid. 

A crucial assumption in such calculations of the stability boundary based on the 
Orr-Sommerfeld equation is that, although both mean flow and the Reynolds number 
R vary with downstream distance x (R increases like 2'' in this case), the flow may be 
considered locally parallel, i.e. mean flow variations in x may be ignored. The 
Orr-Sommerfeld equation is therefore an ordinary differential equation in the normal 
coordinate yd  whose solutions at any given station xd give the band of unstable 
frequencies in a flow which extends to & co in xd with no variation. This is clearly an 
approximation at best; figure 1 shows a comparison of this Orr-Sommerfeld theory 
with measurements, from which it can be seen that there are discrepancies, especially 
at low Reynolds numbers. Several workers have investigated the stability of non- 
parallel flows in the expectation that this discrepancy may be explained wholly or in 
part as due to flow non-parallelism. Potentially the most important consequence of 
including non-parallel effects would appear to be that the simplification to an ordinary 
differential equation could in general be lost. However, the fact that streamwise 
derivatives of mean quantities are only O(R-') simplifies the formulation of the non- 
parallel problem, and has been exploited in some way by most workers. 

Apart from the common feature of assuming slow variations in x, the non-parallel 
problem has been tackled in different ways by different workers and the results are not 
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always in agreement with each other. The different approaches taken may broadly be 
categorized as follows: (a)  modified Orr-Sommerfeld equation (Barry & Ross 1970; 
Bertolotti, Herbert & Spalart 1992; Sen 1993; and the present work); (b)  obtaining 
non-parallel effects by a perturbation of the parallel solution (Bouthier 1972, 1973 ; 
Gaster 1974); (c) method of multiple scales (Ling & Reynolds 1973; Saric & Nayfeh 
1975) ; ( d )  triple-deck asymptotic expansions (Smith 1979); and (e)  direct simulation 
(Fasel & Konzelmann 1990; Bertolotti et al. 1992). 

Barry & Ross (1970) derived a modified Orr-Sommerfeld equation for the flow over 
a flat plate where they included the effect of the normal component of the mean velocity 
which arises due to boundary-layer growth. They neglected any possible streamwise 
variation in wavenumber and also assumed that the disturbance eigenfunction depends 
only on distance from the surface non-dimensionalized by a length scale that does not 
vary streamwise. Bouthier (1972, 1973) included non-parallel effects by considering a 
perturbation of the Orr-Sommerfeld problem where the Orr-Sommerfeld eigen- 
function $J is corrected by an x-dependent amplitude as well as a higher-order term 
$Jl. The wavenumber too depends on the streamwise coordinate. Bouthier made the 
important point that stability depends on the flow quantity being considered (e.g. 
disturbance kinetic energy, streamwise disturbance velocity, etc.) as well as on the 
distance from the wall. Ling & Reynolds (1973) derived a modified Orr-Sommerfeld 
equation where they neglected the streamwise variation of the boundary-layer 
thickness. Their computed stability boundary for Blasius flow did not differ 
significantly from the Orr-Sommerfeld boundary. Following the approach of Barry & 
Ross, Wazzan, Taghavi & Keltner (1974) computed the stability of Falkner-Skan 
flows. Gaster’s (1974) approach was similar to that of Bouthier: the basic assumption 
was that the disturbances in developing flow could be described in terms of local 
eigenfunctions with x-dependent amplitudes by means of a perturbation of the 
Orr-Sommerfeld problem. This approach accounts for all effects of order up to R-l. 
Gaster noted that the ‘ neutral stability ’ boundary measured in an experiment will 
depend on the path traversed by the measuring probe. He computed stability boundaries 
by following different paths and compared these with the appropriate experiments. His 
non-parallel computations show instability at a marginally lower Reynolds number 
as well as up to a slightly higher frequency than the parallel analysis, but do not 
entirely remove the discrepancies compared to experiment. His results have provided 
a standard of comparison for all later work, and are supported by several recent studies, 
e.g. Fasel & Konzelmann (1990), Bertolotti et al. (1992) and the present results. 

Saric & Nayfeh (1975) performed a spatial stability analysis on slightly non-parallel 
flows by the method of multiple scales and computed stability boundaries for 
Falkner-Skan profiles. In the case of a flat plate, their results matched much better with 
experiment than Gaster’s. However, this agreement was fortuitous (see Drazin & Reid 
198 1) since they had neglected the streamwise variation in the shape of the disturbance 
velocity profile. When they accounted for this term in their method, they obtained 
results in agreement with Gaster’s. Smith (1979) considered an asymptotic expansion 
at large Reynolds numbers and used the triple-deck structure of the disturbances at the 
lower branch of the neutral stability curve to obtain a correction in the coefficient of 
R-3/4 in the expansion for the neutrally stable frequency. This approach may be 
followed for the upper branch too. This method is strictly valid only for very large 
Reynolds numbers and cannot be used to compute the critical Reynolds number 
accurately. Fasel & Konzelmann (1 990) solved the complete Navier-Stokes equations 
numerically to obtain non-parallel effects in the stability of a Blasius boundary layer. 
Their results were in good agreement with Gaster’s. Bertolotti et al. (1992) derived a 
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'parabolic stability equation' over a flat plate assuming slow variations in the 
streamwise direction, which they solved by space marching (and locally to obtain initial 
conditions for the marching procedure). These authors also performed stability studies 
by direct numerical simulation and found that the results matched those of the 
parabolic stability equation. Their results, as mentioned before, agree with Gaster's. 
They report that the computational time required for the local procedure is an order 
of magnitude greater than that for the marching procedure. Sen (1993) argued that the 
streamwise derivative of the dimensional wavenumber (dcr,/dx,) is negligible while 
the streamwise derivative of the eigenfunction (c?$/ax,), being orthogonal to the 
eigenfunction $ outside the boundary layer, does not alter the results significantly. He 
used a constant length scale 8: for non-dimensionalizing the disturbance stream 
function. However, at some stage in the investigation 8: was taken to be numerically 
equal to the local displacement thickness 6". His results agree better with experiment 
than those of other workers. In work currently underway, M. Thomas & P. K. Sen 
have incorporated the effects of the x-dependence of the wavenumber and the 
eigenfunction into Sen's modified equation which still uses the same concept of a 
locally constant 8;. 

The situation (at least till very recently, see below) has therefore been that many of 
the theoretical approaches provide results in broad agreement among themselves, but 
not with the experimental results available at low Reynolds numbers. The theory of 
Sen is an exception, but agreement with experiment is not as simple an issue as it 
appears at first sight. Among other reasons (discussed at length by Saric 1990) is the 
sensitivity of experimental results to (i) the track along which the probe is traversed to 
measure amplification and (ii) the shape and extent of the leading edge of the plate on 
which the experiment is conducted. The strong influence of the latter has been 
highlighted in the recent experiments of Klingmann et al. (1993), whose results are in 
good agreement with Gaster's computed results. These workers conclude that the 
major reason for the departure of their results from earlier experimental work is that 
in the latter the external velocity was not maintained constant in the vicinity of the 
leading edge. Klingmann et al. ensure a zero pressure gradient in this region by 
deflecting a tail flap attached to the experimental flat plate; with the flap horizontal, 
they obtain a neutral stability curve close to those of Schubauer & Skramstad and Ross 
et al. (1970). 

It is therefore of value to put the theory of non-parallel flows on a stronger 
foundation. 

In applications boundary layers are often subject to the influence of pressure 
gradients, not always mild. However, no satisfactory theory of the stability of such 
flows, taking account of non-parallelism, is available. As a first step in this direction, 
we study here the stability of spatially developing Falkner-Skan flows. The purpose is 
to derive and solve a stability equation correct to order R-l. The local free-stream 
velocity and momentum thickness are used to non-dimensionalize the perturbation 
equations; this is equivalent to making a coordinate transformation to the similarity 
variables governing Falkner-Skan flows. This procedure simplifies the ordering of 
terms and the elimination of all those above a required order; furthermore the 
Falkner-Skan equation for the mean flow emerges naturally in this formulation. This 
representation also lends itself to a natural extension to non-similar flows. The 
disturbance eigenfunction and the wavenumber are assumed to be slowly varying 
functions of the streamwise distance x, i.e. their derivatives with respect to x are 
assumed to be O(R-l); the second derivatives, being o(R-l), are negligible. The 
resulting equation is a 'degenerate' partial differential equation, i.e. it contains x- 
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derivatives of the wavenumber as well as the disturbance eigenfunction which at any 
x-location are a number and a function of y alone respectively, so it can be treated as 
a parametric differential equation up to the order considered. The method for obtaining 
the x-derivative terms is described in $ 3 .  The present equation contains the 
Orr-Sommerfeld equation but does not reduce to it in any rational approximation; the 
lowest-order rational approximation is a ‘ reduced’ Orr-Sommerfeld equation in 
transformed variables, discussed in $ 8. For zero pressure gradient, the present results 
support the non-parallel analysis of Gaster (1974) and do not agree much better with 
earlier experimental results than the parallel analysis, but it is shown that in the 
presence of adverse pressure gradients the results of a stability analysis which accounts 
for the growth of the boundary layer depart significantly at  low Reynolds numbers 
from parallel flow results. 

The present formulation and the method of solution are described in $52 and 3 
respectively; a detailed comparison of the present formulation with earlier work is 
given in Appendix A. The results for Blasius flow are given in $4 while $ 5 discusses the 
results for Falkner-Skan flows. The implications of the non-parallel analysis for the 
enmethodology for transition prediction are discussed in $6. The extension to 
arbitrary pressure gradients is described in $7. Section 8 contains a description of the 
lowest-order theory mentioned above. A concluding discussion is presented in $ 9. 

2. Formulation for non-parallel flows 
2.1. The equations 

In the classical linear stability analysis of the flow over a flat plate (described for 
example in Drazin & Reid 1981), the disturbance is broken up into normal modes of 
the form 

= # J ( ~ )  ei(az-wt) , 

where a and o are the wavenumber and frequency of the disturbance respectively. Only 
two-dimensional disturbances are considered since, for a two-dimensional mean flow, 
they become unstable at a lower Reynolds number than three-dimensional disturbances 
(Squire’s theorem). Since the disturbances are assumed small, their products may be 
neglected. If it is further assumed that the boundary layer is locally parallel, i.e. does 
not grow with x (so a / & =  0 and the normal velocity is zero), #J satisfies the 
Orr-Sommerfeld equation 

1 1 
R i(o -a@’) (DZ - 2) + ia@” + - (D4 - 2a2D2 + a4) #J = 0 

which defines the Orr-Sommerfeld operator {OS}. Equation (1) has been non- 
dimensionalized using the free-stream velocity U and a boundary-layer thickness (in 
what follows the momentum thickness 0) as scales; R is the Reynolds number based 
on the same scales, 

dk Dk E - 
dyk’ k = 1,2, ..., 

and primes on the mean streamfunction @(y)  denote differentiation with respect to y .  
In spatial stability analysis, a = 01, + ia, is taken to be complex and o to be real, the 
boundary layer being unstable to a given disturbance if at is negative. 

To see how the assumption of parallelism in the Orr-Sommerfeld equation may be 
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relaxed, we return to the incompressible Navier-Stokes equations in two-dimensional 
flow, which may be written in terms of the streamfunction s[ld as 

where the subscript d indicates a dimensional quantity. The streamfunction may be 
expressed as the sum of a steady mean and a time-dependent perturbation, 

First the following non-dimensionalization is used : 
$d(xd, Yd, t, = @ d x d ?  Yd) + dd<xd, Yd? Id)' 

It can be seen that the non-dimensionalization adopted, especially for the streamwise 
distance x, represents a departure from all earlier work; although not essential, the 
above approach makes it easier to establish connections with the Orr-Sommerfeld 
equation, to which we shall return in $8. It must be noted that as 0 is permitted to be 
a function of x, the variable y, here and in all subsequent equations, is proportional to 
the variable usually denoted as 7 in similarity solutions of the boundary-layer 
equations. For a Falkner-Skan profile, U - x2 where m is a constant. Therefore 

2x, - R d0 - q d(U0) - Up 
(1+m)0 p' dx, R' dx, R '  

_ -  X =  (4) 

where p and q are constants given by 

We note that d/3/dxd = O(R-'), and assume that a and 4 cannot vary faster (in x) than 
0, i.e. that their first derivatives with respect to x are at most of order R-l, and that their 
second derivatives are o(R-l) and can therefore be neglected. On substituting this in (2) 
it is seen that the mean flow equation is given by 

( 5 )  
which is the Falkner-Skan equation differentiated once with respect toy. Unlike in the 
traditional Orr-Sommerfeld approach, the correct mean flow equation emerges 
naturally here. The disturbance streamfunction is given by 

where the operator, including all terms nominally of O(R-'), is 

QiV +p@@"' + (29 -p) @'@" = 0, 

{NPl$ = 0, 

(NP} = i(w - a@') D2 + ia[ - a(w - a@') + @'"I + - D4 +p@ D3 i R Y 
+ [ - 201' + (2q -p) @'I D2 + [2yqa(w - a@') -pa'@ + (2q -p) W ]  D 
+ [a4 + (9 - 2p) +p@"' + 3(p - 4) a2@'] + (- 0 + 3a@') Ra' 

Here, terms of O(y/R2)  have been neglected, hence the above equation is valid as long 
as y - o(R). Since a" and a2$/ax2 are both negligible, at a given Reynolds number a' 
and aq5/ax are independent of x (a' is a number and &$/ax is a function only of y) .  It 
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therefore follows that the above partial differential equation can be treated like an 
ordinary differential equation in y for any prescribed value of R, which plays the role 
of a parameter just as in the Orr-Sommerfeld equation: indeed (6) is best considered 
as a parametric differential equation. However a’ and a$/ax are not known, and may 
be computed for instance by the iterative procedure described in $3. 

2.2. Boundary conditions 

$ = D $ = O  at y = O ,  
$ + O ,  D$+O as y + m .  

The boundary conditions are 

It is shown in Appendix B that at large y the eigenfunction decays as 

.p + R f / f  4. -RE‘ 
2R y + i  

R (9) 

Here,f(x) is fixed by the normalization chosen for $, which is described later in this 
section. Sen (1993) assumed a form similar to the one obtained above for his modified 
Orr-Sommerfeld equation. In order that $ decay at large y the real part of the 
exponent in (9) must be negative, i.e. we must have 

Since ( f ’ / f )  - O(R-’), we have a, B Im (f’/f), hence the coefficient of y in the above 
inequality is positive. Close to the neutral stability curve ai is small, so 

- = p - $ -  da, da, qa, 
dx dR R 

and the first coefficient of y 2  in (10) can be neglected. At the lower branch of the neutral 
stability curve da,/dx < 0, so $ always decays with increasing y .  At the upper branch, 
however, da,/dx > 0, but $ decays as y increases till y - O(ar/ai). Since ai is very close 
to 0 the real part of the exponent is negative up to a very large value of y ,  where the 
analysis is anyway not valid since (6) has been derived assuming y - o(R). 

2.3. Comparison with other approaches 
The non-parallel formulation (6) contains all terms nominally of O(R-’) (except 
possibly for higher-order effects on the mean flow itself, which we shall consider 
below); by this we mean that no terms of higher order are retained, but, because of the 
occurrence of large gradients within the domain near the critical layer and the wall, 
further analysis may (and indeed will) reveal that all the terms retained may not 
necessarily make contributions of the same order to the solution. In other words, (6) 
provides a primitive equation entirely adequate for obtaining solutions to O(R-’). 

To compare (6) with other formulations, we consider the special case of flat-plate 
flow, for which p = q and equation (6) reduces to 

2[a, + Im cf‘/f)] y + (pi/ R - dai/dx) y 2  > 0. (10) 

(1 1) 4 a$ 
R # ax 

a, = 2ya(w - a@‘) - a2@ + W ,  

(0s) $ +- (a, D3 + a2 D2 + a, D + a,} $+a, a’$ + a - = 0, 
where 

a, = @, 
a, = - ao + @”’, 

a2 = @’, 
a, = - o + 3a@’, a# = @‘“ + 3a2@’- 2aw - @’D2. 

It is shown in Appendix A that the equations of Barry & Ross, Ling & Reynolds and 
Sen are incomplete, i.e. they do not contain all the terms in (1 l), while the equation of 
Bertolotti et al. is consistent up to O(R-l) with the above equation but contains in 
addition some terms of higher order (RP2) .  
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2.4. Normalizarion 
The following factors must be clearly defined in a non-parallel stability analysis: the 
normalization adopted for 4; the flow quantity whose stability is being studied; the 
distance from the wall; and the path in the boundary layer along which the disturbance 
is being monitored. The disturbance streamfunction represented by equation (3) 
depends on x through both C$ and a, hence there is an ambiguity in the apportioning 
of the x-dependence between them. By defining a normalization for #, this ambiguity 
is eliminated. Although this normalization may be done in different ways and the 
wavenumber depends on the normalization chosen, determination of the stability (or 
otherwise) of a physical quantity will not be affected. Our choice here is the same as 
that used by Fasel & Konzelmann (1990) and by Bertolotti et al. (1992), and is defined 
by the condition that 

a(D’) = 0 at the inner maximum of D$. (12) 

The inner and outer maxima are the first and second maxima encountered in the 
velocity eigenfunction when moving along the normal coordinate away from the wall. 
In spatial stability analysis using the parallel-flow assumption, disturbances of a given 
frequency are taken to be neutrally stable if the imaginary part of the wavenumber, air 
is equal to zero. However in the non-parallel analysis the criterion can be written as 

ax 

where Q is the physical quantity (usually either the disturbance kinetic energy or the 
streamwise or normal component of the disturbance velocity) whose value at the 
distance ys above the wall is monitored along some prescribed path y ,  = y,(x). For 
example, from the relation 

(where the notation indicates evaluation at constant y )  we see that the normalized 
velocity fluctuation of a given frequency may amplify at  one y and decay at  another. 
Also, corresponding expressions for different physical quantities show that at the same 
location one physical quantity may decay while another amplifies. 

2.5. Higher-order mean flow contribution 
In the above formulation, the mean flow was shown to satisfy the Falkner-Skan 
equation under the assumption that it obeys a similarity law in the non-dimensional 
coordinate y.  However, this only gives the mean flow up to O(1) while the disturbance 
terms are retained up to O(R-’). A rational treatment of the stability problem therefore 
demands that the mean flow be also prescribed to O(R-l). Now higher-order effects 
appear in the mean flow owing to various factors (see e.g. Van Dyke 1975), namely 
curvature, finite extent of the surface, vorticity in the outer flow, displacement 
thickness, etc. These effects are usually specific to the body in the flow, and hence do 
not lend themselves to a general analysis. Nevertheless, the present study may be 
considered to be on semi-infinite wedges in irrotational outer flow, or on a semi-infinite 
flat plate on which the free-stream velocity is arranged to follow a power law by the 
insertion of suitable surfaces elsewhere in the flow (such as liners on wind tunnel 
walls). In this case the only higher-order contribution to the mean flow is due to the 
displacement effect. To illustrate the influence of this effect on flow stability, the 
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contribution to the external velocity distribution on such a surface due to boundary- 
layer development (only) on that surface is obtained from thin-airfoil theory. A 
detailed analysis given in Appendix C yields 

where the second term on the right is proportional to the displacement speed, H is the 
(constant) shape factor of the lowest-order velocity profile and U,, cc x:. (It will be seen 
that the displacement speed is zero in Blasius flow, rn = 0.) The higher-order velocity 
profile is shown in Appendix C to obey similarity in the Falkner-Skan variable. The 
mean velocity profile is given by 

where satisfies the Falkner-Skan equation (5), 
C = Hq [tan (;(m + 1) .)I-’ 

is a constant and z = @; obeys the equation 

The boundary conditions are 
z = O  at y = 0  and z = l  as y + m .  

With the inclusion of the displacement effect the equation for the disturbance 
streamfunction (6) is modified to 

z”+p@oz’+(2q-p)[@;z- 11 = 0. (17) 

iaC 
= 0, 

which is now complete to O(R-’) for the higher-order effect considered. Other higher- 
order contributions (such as curvature) would lead to additional terms in (18). 

The boundary conditions remain the same as before. 

3. Numerical method 
Equation (6) can be treated like a parabolic equation and solved by a marching 

procedure, but we prefer a local approach that elucidates the connection with the 
Orr-Sommerfeld equation. For this purpose, a code for the computation of the 
eigenvalues of the Orr-Sommerfeld equation, developed by P. K. Sen (1989, personal 
communication), was modified to compute neutral stability curves for Falkner-Skan 
profiles based on (6). Details of the numerical method are given in Govindarajan 
(1994). The code uses the Thomas algorithm: equation ( 6 )  is discretized using central 
differencing, and a Noumerov transform is applied to give sixth-order accuracy on all 
the terms. This is done by writing the difference equation in terms of a new variable 
g given by 

$j = (1+KlS2+Kzsl)gi,  
where S stands (in this equation only) for the central-difference operator, and choosing 
Kl and K, suitably. For a given a’ and $ J y ) ,  a septa-diagonal matrix is obtained; the 
coefficients of the first three and last three rows are modified using the boundary 
conditions at the wall (7) and the far field (9) respectively. The matrix is solved by 
Gauss elimination with an assumed a and the correct eigenvaiue is computed iteratively 
by the Newton-Raphson method. The procedure for computing a$/ax and a’ is as 
follows. First make some reasonable guess for a$/i3x and a’ (e.g. from the 
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FIGURE 2.  Comparison of present computations (-, inner maximum; --, outer maximum) on a 
flat plate with Gaster (1974): 0, inner maximum, x ,  outer maximum; ----, Orr-Sommerfeld 
theory. 

Orr-Sommerfeld solution), then solve (6) with the normalization (12) at x (or 
correspondingly, at R )  for a(x) and $(x) and at x+dx (or R + A R )  for cr(x+dx) and 
$(x+dx); compute aq5/ax and 01’ from the solution; repeat until these quantities 
converge. It is found that the solution converges within a few iterations. 

The validation of the code is described in detail in Govindarajan (1994). The 
comparison with Gaster’s results is shown in figure 2. The computational domain was 
about 2.4 times the boundary-layer thickness in the normal coordinate. The 
normalization condition (12) was satisfied by keeping D$ at its inner maximum fixed 
at the complex constant 0.02 + i0. The solution was assumed to have converged when 
the maximum difference (throughout the boundary layer) between the x-derivatives 
from successive iterations, say (AP)maz, was less than 1 x lop6, where P stands for a’, 
$z or D2$%. The convergence was also assessed by computing the difference between 
the results when (AP)maz was 1 x loe5 and 1 x lop6; the maximum difference occurred 
on the upper branch just below the maximum frequency, and was - 0.15 YO. The value 
of AR within which the x-derivatives are assumed constant was taken as 0.1. On using 
a AR of 0.2 the results changed negligibly, the maximum deviation being - 0.2%, 
again in the same region of the stability boundary. 

The computational time in this ‘local’ method was about 1 s per step on a MIPS 
R3000 based machine. For comparison we also tried a marching procedure where the 
x-derivatives were computed from the known solutions at R - A R  and R and used for 
the computation of the solution at R + AR (the solution at the initial location being 
computed using the local method). For the same computational step AR, the time 
taken by the local procedure is two to three times greater than that of marching. 
However, to get similar accuracy, the A R used for marching must be of the order of 
1/20 times the AR needed for the local procedure, so for the same accuracy the local 
procedure is five to six times faster than the marching procedure. The local procedure 



Stability of boundary layers in pressure gradients 127 

I 1 
150 250 350 1 

R 
0 

FIGURE 3. Neutral stability curves at constant y :  --, y,/6 = 0.05; -, y,/S = 0.15; 
_ _ _ _  , Orr-Sommerfeld; 0, Ross el al. (1970). 

is even more economical in the computation of neutral stability boundaries because 
there is no need to follow a particular frequency until neutral stability. Bertolotti et al. 
use a spectral method and their ‘marching’ and ‘local’ procedures are different from 
the ones used here; e.g. in their marching procedure, Bertolotti et al. iterate for the 
correct value of the streamwise variation of the wavenumber by imposing the 
normalization condition and are able to use a larger AR than in the marching 
procedure here. Since a direct comparison of computational times per step is not 
meaningful, we compare the times taken for a given accuracy. This is done by following 
the frequency F = 8.6 x (which is the case studied by Bertolotti 1991) from a 
Reynolds number below the lower boundary ( R  = 308) to one above the upper 
boundary ( R  = 565). The standard solution is taken to be the one using AR = 1 (256 
steps). The deviation in the solution at the final Reynolds number from the standard 
solution is of the order of up to AR = 8, and - lop5 for AR = 16, beyond which 
the solution rapidly deteriorates. The accuracy and computational time (taking 
machine speeds into account) for following a given frequency are about the same as 
those obtained by Bertolotti et al. However, the local method used here is faster for the 
computation of stability boundaries. 

The assumption that a’ and a$/ax are O(R-l) and u‘‘ and a2$/ax2 are o(I2-l) was 
assessed numerically for m = -0.06 by following a disturbance of frequency F = 
2.265 x lo-‘ from R = 70 to 140. The maximum value of Rla’/af encountered was 0.3 1 
and the quantity 

was less than 1.1 for all R. The largest values of Rlol”/al and 

were and 0.03 respectively. 
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(x10-4) o 
FIGURE 4. Dependence of (a) critical Reynolds number (0) and (b)  maximum unstable frequency (A) 
on distance from wall from the Blasius boundary layer: 0 ,  inner maximum; *, outer maximum; 
----, Orr-Sommerfeld. (c) View of stability surface of Blasius boundary layer in ( y ,  F, R)-space. 

4. Effect of non-parallel formulation on neutral stability 
The experiments of Ross et al. (1970) mapped the neutral boundary for the 

streamwise velocity fluctuations monitored at about y ,  = 0.158 where 8 is the 
boundary-layer thickness; we take it here as the height where u,/U = 0.99. The 
corresponding theoretical predictions from the present work are shown in figure 3. It 
is seen that the discrepancy between experiment and linear stability theory is not 
reduced substantially by the inclusion of non-parallel effects. However (as has been 
pointed out by several workers, e.g. Fasel & Konzelmann 1990), stability is very 
sensitive to the distance of the monitoring location from the surface, which calls for 
experiments where the measured quantity and the path followed by the measuring 
probe are specified accurately. This point is illustrated by the close agreement between 
the stability boundary for y d / 8  = 0.05 and experiment (figure 3). The extreme 
sensitivity to the normal distance is obvious from figure 4, which shows the critical 
Reynolds number and the maximum unstable frequency obtained from the stability 
diagrams of u’ along constant-y paths as functions of y d / 8 .  In non-parallel flow theory 
the stability boundary (for any given flow quantity) is a two-dimensional surface in the 
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FIGURE 5. Contribution of various terms to the stability boundary 
at the inner maximum in Blasius flow. 

three-dimensional ( y ,  F, R)-space ; a representation of this surface is shown in figure 
4(c). A sharp discontinuity is obtained near the location of phase change in the 
streamwise disturbance velocity, which is consistent with the observations of Fasel & 
Konzelmann, who plot the neutral Reynolds number for a disturbance of frequency 
F = 3 x 

The stability of the streamwise velocity at its (inner) maximum has received a lot of 
attention in most non-parallel studies. This is because the height at which the 
amplitudes are largest is believed to be the most likely location for the onset of 
nonlinear interactions and breakdown to turbulence. The neutral stability curve for the 
streamwise velocity perturbations at the inner maximum is seen (figure 2) to deviate 
very little from the parallel-flow result. In view of the sensitive dependence on y of the 
stability boundary, it must be considered a coincidence that the values at the inner 
maximum lie so close to the predictions made by the parallel analysis. 

To understand the cause of the differences seen in figure 2, we first note that equation 
(1 1) can be written as 

as a function of the distance from the wall. 

loS>[$l+ O’a,[$l+ a’a,[$l+ [a$@] = 0, 
where 

a, = a,D3+a,D2+a,D+a,. 

(19) 

It can be seen from (19) that the non-parallel effects can be conveniently attributed to 
three types of terms, respectively proportional to the streamwise variation of the 
boundary-layer thickness (O’), the wavenumber (a’) and the eigenfunction (a$@). The 
question that arises is whether the contribution of each of these terms is negligible, or 
whether the terms tend to counteract each other. To answer this question the effect of 
each of these terms relative to the Orr-Sommerfeld solution was studied separately. 
Figure 5 shows that the a$/ax term has a destabilizing effect while the a’ term is 
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FIGURE 6. Amplitude ratios at the inner maximum in Blasius flow: -, present; ----, 
Orr-Sommerfeld; 0, Gaster (1974); *, Fasel & Konzelmann (1990). (a) F = 1.4 x 
(b)  F = 3 x 10-4. 

stabilizing. Since the distribution of the x-dependence between the eigenfunction (4) 
and the exponent (a)  is arbitrary, it is only the joint contribution of the two that is 
physically relevant. This joint effect is seen from figure 5 to be slightly stabilizing, while 
there is an increase in the unstable region when the 8' term alone is added to the 
Orr-Sommerfeld equation. Thus, although each non-parallel term has a significant 
effect on the stability, their effects at the inner maximum tend to counteract each other 
to give a final stability boundary very close to the Orr-Sommerfeld loop. 

Figure 6 shows that amplitude ratios computed by the present theory are in good 
agreement with the direct simulations of Fasel & Konzelmann. At the inner maximum 
(figure 6a), the present results agree even more closely with the direct numerical 
simulations than those of Gaster at F = 1.4 x (figure 6a) ,  while all three results 
agree very well at F = 3 x (figure 6b). 
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FIGURE 7. Non-parallel effects on the stability boundary in Falkner-Skan flows. ----, Parallel 
flow. Present results: -, inner maximum; --, outer maximum. 

5. Results for Falkner-Skan flows 
Stability boundaries have been computed for different values of the Falkner-Skan 

parameter m, and a representative sample is shown in figure 7. The non-dimensional 
frequency plotted in these figures is given by F = W / R ( ~ - ’ ~ ) ’ ( ’ + ~ ) ,  which is proportional 
to the dimensional frequency wd. At high negative values of m, i.e. close to separation, 
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FIGURE 8. Effect of flow non-parallelism on the critical Reynolds number of Falkner-Skan flows. 
_ _ _ _  , Parallel flow. Present results: -, inner maximum; --, outer maximum. 

numerical convergence became more and more difficult, and the criterion for 
convergence had to be relaxed by an order of magnitude for m = -0.08. However, 
since the critical Reynolds number is an order of magnitude smaller at this value of m 
than in zero-pressure-gradient flows, the relative magnitude of the error (AP)  and the 
reciprocal of the Reynolds number remain the same. In favourable pressure gradients, 
the present results are hardly different from the parallel-flow theory, as seen from figure 
7. This is understandable as the Reynolds numbers encountered are so high that 1/R 
effects are bound to be smaller. Shown in the same figure are the non-parallel effects 
in adverse-pressure-gradient flows. Here, the reduction in critical Reynolds number is 
significant. At m = - 0.08 there were convergence difficulties at low Reynolds numbers 
as already mentioned, so no closed loop is shown. The effect of the new non-parallel 
terms in the stability equation on the critical Reynolds number increases with 
increasing adverse pressure gradient, as shown in figure 8. 

The higher-order mean flow equation (17) may be solved for different values of m, 
and an example of the results is shown in Appendix C. For m < 0.082 the higher-order 
profile contains a region of negative contribution to the velocity, but the total 
streamwise velocity does not contain any reverse flow for m 2 -0.08. In the case of 
flow over a flat plate, C = 0 and there is no first-order correction to the mean flow due 
to displacement thickness, although equation (17) can be solved for m = 0 to give a z- 
distribution. The effect of the higher-order mean flow is negligible in favourable- 
pressure-gradient flows, once again because of the high Reynolds numbers involved. In 
adverse pressure gradients the coefficient C is a (numerically small) positive quantity, 
and the higher-order velocity profile has a destabilizing effect since it reduces the 
velocity near the wall. It is seen from figure 9 that the effect is significant in strong 
pressure gradients at low Reynolds numbers. 
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FIGURE 9. Change in stability boundary at the inner maximum due to higher-order displacement effect 
on the mean flow at m = -0.06. ----, Orr-Sommerfeld; -, non-parallel, Falkner-Skan solution; 
--, non-parallel, including displacement effect. 

6. Implications for en methodology 
The maximum amplitude ratio n is defined by 

n = max {log (A/A,A} ,  (20) 
F 

where A is the amplitude at a given location of a disturbance of a certain frequency and 
A,, is the amplitude at the critical Reynolds number, and the maximum is taken over 
all frequencies. Since the work of Smith & Gamberoni (1956) and Van Ingen (1956), 
the factor n has been widely used in semi-empirical methods for the prediction of 
transition onset in boundary layers. Recent flight work (Horstmann, Quast & Redekar 
1990) suggests that although n is not a constant at transition, there does appear to exist 
a good correlation between the value of n and transition Reynolds number. 

In the present formulation, A for streamwise velocity fluctuations is given by 

Hence, at the inner maximum where Dq5 is held constant due to the normalization used, 
(20) reduces to 

n = ,ax[ $ /Icr  ai d R]. 

Figures 10 and 11 show the amplitude ratios at the inner and outer maxima for various 
values of the Falkner-Skan parameter m. It is seen that individual amplification curves 
at higher frequencies depart significantly from the parallel-flow computations. For 
example, from figure 10 for in = 0 it is seen that for F = 1.33 x lo-‘, the logarithm of 
the maximum amplification from a non-parallel analysis is higher than the parallel 
result by about 15 % and 30 % at the inner and outer maxima respectively. For in = 
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FIGURE 10. Amplification factors at different frequencies and m = 0. (a) Low Reynolds numbers; 
(b) high Reynolds numbers. ----, Orr-Sommerfeld; -, inner maximum; --, outer maximum. 

-0.06 (figure 1 l), F = 2.52 x gives rise to amplification ratios whose logarithms 
are 20% and 40% greater than the parallel result at the inner and outer maxima 
respectively. For disturbances of low frequencies (high Reynolds numbers), however, 
there is no significant difference between parallel and non-parallel results. 

The envelope of the amplification curves (n) is shown in figure 12. It is seen that 
although the amplification of individual frequencies especially at low Reynolds 
numbers is substantially altered by non-parallel effects, n at the inner maximum is not 
changed significantly: the maximum difference in n due to flow non-parallelism is 0.05, 
which is well within the uncertainties of the whole en methodology. For transition 
predictions by the en method, where the speed of the computational method is an 
important factor, n p  obtained from the parallel analysis should therefore be sufficient 
for most practical purposes. The fact that amplitude ratios are affected by non- 
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parallelism only when they are relatively low implies that corrections may be necessary 
only in highly disturbed environments where transition Reynolds numbers are low, e.g. 
in turbomachinery applications. Special note of non-parallel effects should be taken in 
situations where the noise contains a dominant frequency at the high end of the 
unstable range. 

7. Formulation for arbitrary pressure gradients 
If the boundary layer does not follow one of the similarity solutions there are several 

approaches one can take. The most obvious one is to solve for the mean flow by one 
of the many algorithms now available (e.g. Cebeci & Smith 1974), and analyse its 
stability through the analogue of equation (6), generalized for arbitrary pressure 
gradient. However, in many applications it is usually possible to use a local similarity 
or near-similarity approach, as this lends itself to faster calculation procedures and 
provides greater insight into the stability results. We follow here the latter approach, 
and illustrate its use in a specific case. 

In the present approach, it is useful to begin by introducing the pressure gradient 
parameter h defined by Thwaites (1949), and write the gradient of the free-stream 
velocity U as 

(21) 
dU AU 
dx, Re' 

It turns out to be sufficient to compute the momentum thickness by a modification of 
the Thwaites relation due to Dey & Narasimha (1990), 

- 

in which the exponents have been chosen to give good agreement over a wider range 
of pressure gradients thari those originally considered by Thwaites (especially highly 
favourable gradients). On comparing (21) and (22) with (4) it is seen that 

As h is in general a function of xd, p and q are no longer constant as for similar flows, 
but for flows where h varies slowly in x, i.e. 

p = 0.22- 1.7A and q = 0.22-2.7A. (23)  

their derivatives with respect to x may be neglected. This consideration allows us to 
compute the mean flow in the non-similar boundary layer in a simple way, through the 
mean streamfunction @ introduced in (3), except that it is now a function of both x and 
y with an x-derivative of O(R-'). On making use of this approximation in equation (2), 
the mean flow equation becomes 

D4@ +p@D3@ + (2q-p) D@D2@ = R[D@D2 - D3@] a@/ax, 
which can be integrated once with respect to y to give 

The corresponding disturbance equation is 
D3@ +p@D2@ + (p - 4)  [ 1 - (D@)'] = R(D@D - D2@) a@/ax. (24) 

(NP)+ 

Equations (24) and (25) are now solved using the algorithms described in $ 3 .  
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FIGURE 13. Amplification factors on a DESB159 airfoil at a Reynolds number of lo6. (a) Angle 
of attack = -0.954", (b) 1.279". ----, Orr-Sommerfeld; -, inner maximum. 

In order to assess the implications of the non-parallel formulation for pressure 
gradient flows of the kind often encountered in applications, especially in airfoil 
analysis and design, we have solved equations (24) and (25) for the airfoil DESB159, 
which has been analysed extensively by Viken (1986). This section is typical of a class 
of natural laminar-flow airfoils designed with the help of linear stability theory, and 
has been tailored to give a desired amplification at  the design condition using only as 
much acceleration as is necessary, so that the severity of the downstream pressure 
recovery is reduced to the minimum. At the design condition of C, = 0.45 (angle of 
attack = -0.954"), the amplitude ratios computed from parallel theory at  a chord 
Reynolds number of 1 x lo6 agree closely with Viken's results (the largest difference 
being 0.6 at a frequency of 6000 Hz), although the pressure distribution on the airfoil 
was taken from a diagram and so was not accurately known. The mean flow was 
calculated from equation (24). On performing a non-parallel stability analysis on this 
airfoil, the difference in the amplitude ratios was not significant (figure 13a). This 
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FIGURE 14. Amplification factors on a Wortmann FX-63-137 airfoil. Angle of attack = 0, chord 
Reynolds number = 80000. ----, Orr-Sommerfeld; 0, non-parallel (local similarity); -, non- 
parallel (weakly non-similar). 

observation is also true for the off-design condition of C, = 0.75, as may be seen from 
figure 13(b). 

On the other hand, we obtain slightly different results for the Wortmann FX-63-137 
airfoil (Miley 1982), also designed for natural laminar flow applications, when we 
analyse the flow at low Reynolds numbers. The mean flow here was computed as 
before, by solving (24). The results from two different approximate analyses are shown 
in figure 14. In the first, which we shall call the local similarity approximation, the 
amplitude ratios are computed from equation (6), with the local value of the 
parameters p and q obtained from (23). In the second, which we shall call the weakly 
non-similar approach, the mean flow is computed from (24) and the stability 
characteristics from (25). It is seen that the non-parallel effects are significant at low 
Reynolds numbers ; the amplitude ratios computed from the weakly non-similar theory 
are consistently higher than those from either the parallel theory (by up to 0.2) or the 
local similarity approach at a chord Reynolds number of 80000. At a Reynolds 
number of 2 x lo*, however, the differences cannot be considered significant for 
applications. Airfoils which are designed to operate at low Reynolds numbers, 
especially those in high-disturbance environments where transition also takes place at 
low Reynolds numbers, would require a non-parallel analysis such as that proposed by 
equation (25) for accurate computations of amplitude ratios. However, this analysis 
does not account for surface curvature, which could alter the results significantly. 

8. Lowest-order non-parallel flow theory 
Considering that the effects of non-parallelism as discussed above, especially for 

calculations of total amplification, are in general weak, and no more than modest even 
in strong adverse pressure gradients, it is pertinent to ask what a rational O(1) estimate 
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of the stability characteristics of a (spatially growing) boundary layer would be. A 
related consideration is the following. If we propose to estimate stability parameters 
to O(R-l), it is clearly necessary to first have the mean flow correct to O(R-l), i.e. to 
work with higher-order boundary-layer theory (as we have already illustrated in $2.5). 
However, it surely is not acceptable to argue that non-parallel effects can be 
rationally estimated only when higher-order boundary-layer velocity profiles are 
available. It is true that this question does not arise in the special case of Blasius flow 
on an infinite flat plate, as the higher-order solution in this case happens to vanish; but 
in general this is not true, and we should expect to be able to formulate a lower-order 
non-parallel flow theory. 

To pursue this question, we begin by noting that all variables in (6), including x, y 
and a, already contain some information about the non-parallel flow in the boundary 
layer. In the limit of large R we may at first expect only the inviscid terms in (6) 
(constituting the Rayleigh equation in transformed variables), 

{i(w-a@’) D2 + ia [ -a(w-a@) + PI) # = 0, 

to govern the eigenfunction q5, but it is well known from Tollmien-Schlichting theory 
that, because of the singularity at the critical layer and the no-slip condition at the wall, 
viscous layers appear in the solution, to which they make O(1) contributions. The 
terms that describe these viscous layers are already known from Orr-Sommerfeld 
theory; all the other terms in (6) (in particular those proportional to O’, a’ and #J make 
only higher-order contributions to the solution. However, not all the terms in the 
Orr-Sommerfeld equation are equally significant either, as the following argument 
shows. At large R, classical arguments can be repeated to show that (in the transformed 
variables also) the critical layer and the wall layer have thicknesses that are respectively 
proportional to R-’13 and R-’”; under certain conditions the former may be contained 
in the latter (see e.g. Drazin & Reid 1981; Graebel 1966). Now writing the 
Orr-Sommerfeld equation in the form 

1 
R 

[ - i(w - a@’) D2 + ia{a(w - a@’) - @”’}I q5 = - [D4 - 2a2D2 + a4] q5 

we see from an order-of-magnitude analysis that, in the critical layer, the terms are 
respectively of order 1 and R-l13 on the left, and 1, RP2I3 and R-4/3 on the right. Now 
as we are limiting ourselves to the lowest-order basic flow which is known only to less 
than O(R-l), terms of this and higher order cannot legitimately be retained in a rational 
analysis to the lowest order. We therefore have the valid limiting equation 

- i(o - a@’) D2# = ia( - 01(w - a@’) + 0’”) 
R R 

where the square brackets contain terms which can be neglected to O(l), but may be 
retained to O(R-’I3). It is well known that their retention is necessary for matching the 
critical layer to inviscid-layer solutions (Drazin & Reid 198 1). 

A similar analysis shows that the only terms of order lower than R-’ in the wall layer 
are 

1 
R 

- i(w -a@‘) D2# = - D4#. 

Clearly therefore the term a4$/R in the Orr-Sommerfeld equation ought to be 
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removed, as it is of higher order everywhere. All the relevant 'distinguished' limits of 
the problem can therefore be obtained from the ' reduced ' Orr-Sommerfeld equation 

{OS}'q5 = [i(w-a@1)(D2-a2)+ia@"'+-(D4-2a2D2)] 1 ~ = 0. R 

This is therefore a rational approximation to similar flows with the streamfunction 
decomposition (3), valid also for non-similar flows as defined in 87 (equation (25) 
contains no additional low-order terms). Thus, equation (26) governs the stability of 
non-parallel boundary-layer flows in the lowest order, provided the variables (which 
resemble those that appear in the classical Orr-Sommerfeld equation) are interpreted 
in the light of the transformations (3). In the literature to date, the Orr-Sommerfeld 
equation and the parallel-flow assumption have been treated as synonymous. What we 
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have demonstrated is that, in transformed variables, the (reduced) Orr-Sommerfeld 
equation already provides the lowest-order solution in non-parallel flow. 

To verify this assertion, we have computed solutions of (26) and obtained stability 
boundaries using (14). Note that in (26) R is a function of x, the eigensolution 4 = $( y ;  
R(x)) contains R(x) implicitly as a parameter, and 

substituting this relation in (14) the variation of the stability characteristics in y 
(characteristic of the non-parallel flow) can be worked out. The results are shown in 
figure 15, in comparison with the higher-order calculations of $4, for the special case 
of Blasius flow: it is seen that the agreement is satisfactory. The fact that a reinterpreted 
Orr-Sommerfeld equation (reduced or otherwise) implicitly contains information on 
the effects of non-parallelism is presumably the reason for the success of Gaster’s 
method for handling the problem. 

It has been numerically confirmed that a solution of equation (26) shows virtually 
no difference from that of the Orr-Sommerfeld equation for all the Falkner-Skan flows 
considered here. 

An important consequence of the absence of a44/R in (26) is that the reduced form 
of the partial differential equations that imply the (reduced) Orr-Sommerfeld equation 
are no longer elliptic. A full exploration of the consequences of the ideas set forth in 
this section will be separately published. 

9. Conclusions 
A rational formulation for the stability of similar boundary layers, taking account 

of non-parallelism in the flow and correct to O(R-’), has been proposed. The present 
non-parallel analysis confirms that stability is a sensitive function of the normal 
distance from the surface. If we choose amplification at the inner maximum of the 
streamwise velocity perturbation as the criterion for stability, the present results are 
very close to those of parallel theory for Blasius flow, but this must be considered 
somewhat of a coincidence as the agreement would disappear if a different location or 
criterion were specified. Adopting the inner maximum criterion, the differences 
between parallel and non-parallel theory are even less when the pressure gradient is 
favourable, but there is a significant departure at low Reynolds numbers in decelerating 
flows. The higher-order mean velocity profile due to the displacement effect has a 
negligible effect in favourable-pressure-gradient flows, but an appreciable destabilizing 
effect at low Reynolds numbers in strong adverse pressure gradients. The amplification 
curves for individual frequencies in zero and adverse pressure gradients change 
substantially at low Reynolds numbers at both the inner and outer maxima. Their 
envelope at the inner maximum, however, changes only marginally, the n factor being 
different by at most 0.05 in adverse-pressure-gradient flows. 

We wish to point out that owing to the use of the transformed coordinates (3) in the 
present approach, it is straightforward to eliminate higher-order terms and arrive at a 
rational formulation up to any desired order. Furthermore, our representation does 
not make use of a reference point (such as R, in equation (6) of Bertolotti et a[.) and 
is therefore a more efficient way of computing local solutions. We have demonstrated 
that the present equation may also be treated as a parabolic equation and solved by 
space marching, if necessary, although this has no advantage in mapping stability 
boundaries. Nonlinear effects can also be handled, as we propose to show subsequently. 
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It is important to distinguish the present approach from other high-Reynolds- 
number asymptotic theories such as the triple-deck theory of Smith (1979), which is not 
valid at moderately high Reynolds numbers. Thus, while the triple-deck results 
compare well with the present results for flat-plate flow at very high Reynolds numbers, 
there are significant differences at the lower Reynolds number end of the stability 
boundary (the triple-deck theory does not yield a critical Reynolds number). Indeed, 
as critical Reynolds numbers even in the presence of significantly adverse pressure 
gradients are 9 1, the entire stability loop can be predicted accurately by the present 
method for all pressure gradients. 

Finally, we have shown that the lowest-order effects of non-parallelism are in fact 
already present in a suitably reinterpreted version of a reduced Orr-Sommerfeld 
equation; for similarity solutions of the boundary-layer equations, the reinterpretation 
consists in the use of local non-dimensionalization exactly as in the Falkner-Skan 
equations. In such appropriately transformed variables, the (reduced) Orr-Sommerfeld 
equation already provides the lowest-order rational estimates of the stability 
parameters of a growing boundary layer; these should be satisfactory in applications 
except possibly when transition occurs at relatively low Reynolds numbers in the 
presence of adverse pressure gradients. 
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Appendix A. Comparison with existing formulations for Blasius flow 
For Blasius flow, the present equation (1 1) is 

{OS} 4 +-{a, 4 D3 + a, D2+ a, D + a,} q5 + a,a'q5 + a - aq5 = 0. R 4 ax 

Barry & Ross (1970) assumed a disturbance of the form 

where ad is [locally] constant. The linearized two-dimensional Navier-Stokes equation, 
which we may write as 

{ 9 } [ 6 d l  = O, (A 2) 

then reduces to 

a2U i 
(aU-w)  (D2- a,) - a---+-(D2 - - iVD(D2 -a2) + i 

aY2 Ro 

R, in (A 3) is based on a given (constant) boundary-layer thickness. The last two terms 
on the left-hand side of (A 3) account for the normal component of the mean velocity. 
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Substituting for Vfrom the similarity streamfunction @, equation (A 3) may be written 
for Blasius flow as 

(0s) $ + 4 {(a,  - y@’) D3 + [a, + y( - 2wa + 3a2@’ + Qff’)] D} $ = 0. (A 4) 

Since this method does not account for all non-parallel effects, in particular for the x- 
dependence of the disturbance wavenumber and eigenfunction, (A 4) does not contain 
all the terms in (A 1). 

Ling & Reynolds (1973) started with (A 2) non-dimensionalized by the free-stream 
velocity U ,  and a length scale (x0v/U,)li2 where xo is constant. They wrote down 
expansions in a small parameter E in the neighbourhood of a given point x, and 
obtained three equations which can be combined after neglecting higher-order terms in 
the mean flow to give 

(A 5 )  

This equation omits the term containing the streamwise derivative of the length scale. 
In their multiple-scale analysis, Saric & Nayfeh (1975) use the scale x1 = ex to 

represent slow variations in x and derive two equations which, when combined putting 
E = 1/R, give precisely the equation of Bertolotti et al., which we now proceed to 
discuss. 

In the present notation, the parabolic stability equation (6a) of Bertolotti et al. 
(1992) is given by 

R 

{OS} $ + am a‘$ +ag a+/ax = 0. 

4 ‘R (0s) $ +-{a3  D3 + a2 D2 + a, D + a,} $+aor a’$ + u - = -$, R $ax R2 

a 
ax 

aR = 2iqa[2yD3+ 3D2-2ya2D-a2]-4ia(D2-a,) R--2iRa‘(D2-3a2). 

Equation (A 6) is the same as (A 1) except for the right-hand side, which contains 
certain O ( K 2 )  terms, indicating that the present formulation, in the special case of 
constant free-stream velocity, is consistent with that of Bertolotti et al. (1992) to 
O(R-’); the inclusion of O(RP2) terms would be unjustifiable unless the mean flow is 
known to the same order, which is hardly ever the case. Furthermore, it has been found 
that the right-hand side of (A 6) has no noticeable effect on the solution. 

The expression used by Sen (1993) for the streamfunction is 
$d = U6*@+ US,* $ ( y )  ei(n”-wt). (A 7) 

On the assumption that S,* is a constant, the following modified Orr-Sommerfeld 
equation is derived where 6: has been taken to be numerically equal to 6*: 

{OS} $ +%{a3 D3 +2a, D2 +a, D} $ = 0. R 

It is straightforward to show that the x-derivative of 6,* gives rise to the additional 
terms q/R( - a, D2 +a,) $ in (A 1). 

Appendix B. Free-stream boundary conditions 
As the computations are carried out in a finite domain, it is important to derive the 

form of the (decaying) eigenfunction at large y to ensure that the correct free-stream 
boundary conditions are satisfied by the computed solution. At y much greater than 
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the boundary-layer thickness @' = 1, a'' = 0"' = 0 and @ = y-S*/O except for 
exponentially small terms in y ,  and the Orr-Sommerfeld equation (1) reduces to one 
with constant coefficients which has four solutions. Two of these are rejected because 
they indicate exponentially increasing disturbances at large y ,  which is unphysical, 
while the third is not considered since it decays much faster than the solution which is 
retained, 

(B 1) 
In the non-parallel formulation (6), the coefficients of the first and third derivatives in 
y of q5 as well as the right-hand side are functions of y outside the boundary layer; for 
yd  much greater than the boundary-layer thickness 6, equation (6) reduces to 

4 - e="Y. 

- D4 + p  y -- D3 + [iR(w- a)  - 2a2 + 2q -p] D2 R 'i ( 
+ [2yqa(w-a)-pa2(y-~*/O)] D +  [a4-iRa2(w-a)+(q-2p) aw 

+ 3 ( p  - q) a'- (w - 3a) Ra'] + [3a2 - 2aw - D2] R a/i?x} 4 = 0. (B 2) 

Since this equation has additional terms of order R-' compared to the Orr-Sommerfeld 
equation, it is reasonable to expect that the behaviour in the far field will be modified 
by effects of this order. Therefore the form for the decay of the disturbance 
streamfunction outside the boundary layer will differ from (B l), and may be assumed 
to be 

where h'(x) and g are both O(R-l). When (B 3 )  is substituted into (B 2) one obtains a 
second-order linear differential equation for g ,  

4 = h(x) eg(z,!l-a(Z)Ld > (B 3 )  

D2g - 2aDg + [t ,  - 2at, - 2yat1] = 0, 
where 

The solution is 
1, = (qa - Ra')/iR, t ,  = ( p  + R(h'/h))/iR. 

1 
g = -it,y2- t 2 y  +% [ (&+ I )  t1 - l,] + c1 e2au + c,. 

The constant c, is set equal to 0 on the grounds that 4 must decay at large y .  Equation 
(B 3 )  then gives 

qi = c p  h(x) exp [ (& + 1) 2-21 exp [ - ay - t z  y -3,y2]. 

Now putting 

and noting that t ,  and t ,  are both O(R-'), we have 

'- f = -+o($). h' 
f h  

Equation (B 6) may therefore be written as 

which is the required boundary condition as y + cc. 
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Appendix C. Higher-order mean flow 

layer may be expanded as 
Taking account of higher-order effects, the free-stream velocity U over a boundary 

u(Xd> = uO(xd> + e'l(Xd> + '('), (C 1) 

U, = B x ~ ,  (C 2) 

where e is a constant of O(R-'). For the flow over a semi-infinite wedge, 

where B and m are constants. The higher-order mean flow arising owing to the 
displacement thickness may be derived from the potential flow theory of the flow over 
thin airfoils (Van Dyke 1975), 

where S,* is the lowest-order displacement thickness. The integral in (C 3 )  has the form 
of a Hilbert transform, which can be evaluated to give 

where H is the shape factor which is constant for a given Falkner-Skan profile. The 
higher-order velocity profile is derived from the equations (Van Dyke 1962) 

where u, and v, are the lowest-order velocity components in the streamwise and normal 
directions respectively while u1 and u1 are the corresponding first-order components 
such that 

ud = u, + eul + o(e) and v d  = 0, + ev, + o(e). 

We look for a similarity solution for u1 of the form 

u1 = G ( X d )  @;(7)9 ?1 = Y d / ( X d ) b  (C 7) 
where b is a similarity exponent which is obtained below. The last term in (C 6) is found 
using equations (C 2) and (C 4), and u, and v, are known from the Falkner-Skan 
solution. Using (C 5) and (C 7) to express u1 in terms of G and @,, (C 6) reduces to 

V 

X b  q + -A [(eu,)' Q, + u,(b7x;-1 - e /y)  Q;] @; - 
V 

xib U, CPP [ G' b ] CU, xib-'(3m - 1) 
20Ge 

= 0. (C 8) (b7xi-l- 0'y) @;] @; + -+- q+ ev G X d  

It is to be kept in mind that the primes on 0, refer to differentiation with respect to 
y while those on refer to differentiation with respect to 7 .  For a similar solution, the 
coefficients of (C 8) must be independent of the streamwise location. Applying this 
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FIGURE 16. Mean velocity profiles for rn = -0.06. --, Falkner-Skan, @;; -, solution 
for displacement-effect correction, @;. 

condition to the coefficient of the second derivative -Q,y, we get b = (1 -m) /2 ,  which 
means that 9 is actually proportional to y :  

thus the first-order mean flow obeys the same similarity as the zeroth-order flow. We 
now choose 

G’/G = - b/xd or G = D X L ~ - ’ ~ ~ ) ,  

with D independent of xd, which makes the coefficient of 
With these substitutions (C 8) becomes the ordinary differential equation 

in (C 8) equal to zero. 

Since G may be multiplied by any factor independent of xd if the far-field conditions 
are suitably adjusted, D may be chosen as 

giving G = U,. 

The order of (C 9) may be reduced by one by putting z = @;, and the independent 
variable changed to y for uniformity to give 

z”+p@,z’+(2q-p)[@;z- 11 = 0. (C 10) 

The mean dimensional velocity and streamfunction are thus given by 

and Q i d =  UoO (C 1 1 )  

A sample result for the higher-order velocity profile is shown in figure 16. 
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